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This Lecture

－ Introduction to Various Transmission Lines

－ Coaxial Lines
• Wave Impedance

• Conditions for minimum Damping, maximum Voltage rating, and 
maximum Power Transmission

• Attenuation and Power Capability, what are the Technical Limits? 

• Bandwidth  Higher Order Mode TE11–mode Cutoff Frequency

－ Waveguides (Round and Rectangular)
• Most derivations are now in Appendix including full Set of RF field Components

• Cutoff Frequencies

• Group and Phase Velocity 

• Examples of Mode Pattern

• Attenuation of Fields below Cutoff  Frequency

• Poynting Vector

• Derivation of Transmitted Power in TE10 mode of Rectangular Waveguide

－ USAPS Experiment with Rectangular Waveguide
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Some typical transmission lines

Round Waveguide Rectangular Waveguide

Two-Wire Line

Coaxial Line

Microstrip Dielectric WaveguideCo-planar waveguide
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Introduction
- Transmission lines and waveguides are utilized to transfer electromagnetic waves 
carrying energy and information from a source to a receiver 

- Choice of the line technology depends on the purpose, e.g. operating frequency 
range, the transmitted power level, and what power losses one can tolerate  

- For an efficient transport one likes to guide the energy inside a line instead of 
spreading it out in space 
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Introduction



5

Microstrip Line
ꟷ Microstrip lines are types of planar transmission lines widely used in printed circuit boards 

(PCBs)
• Made by a strip conductor, dielectric substrate, and a ground plate
• Used in the microwave range with typical maximum frequency of 110 GHz
• Wave is confined mostly in dielectric, but is partially in upper substrate (usually air)
• The dielectric constant of the substrate usually decreases with frequency as dipolar polarization in the 

material cannot follow anymore the oscillations of the electric field (starting around 10 GHz)
• The dielectric constant then approaches more and more that of air if the frequency increases  
• At low frequencies, the fields resemble closely a TEM mode (v = 𝑐0/ 𝜀𝑟) with fields confined in the 

dielectric, but at high frequency there are more non-negligible longitudinal components of both E or H
resulting in a ‘quasi’ TEM mode

• Comparably lossy
• Not shielded, may radiate parasitically and is vulnerable to cross-talk

𝜀𝑑𝑖𝑒𝑙.

𝜀𝑎𝑖𝑟

Frank Gustrau, “RF and Microwave Engineering: Fundamentals of 
Wireless Communications’, ISBN: 9781118349571, 2012 
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Coplanar Waveguide

ꟷ Coplanar waveguides (CPWs) are similar to microstrip lines and also used for PCBs
• Invented later than microstrips (1969 versus 1952)
• Easier to fabricate since having the return and main conductors in the same plane
• May or may  not be grounded at the bottom
• Also operate in a quasi-TEM mode at a typical maximum frequency of 110 GHz. 

𝜀𝑑𝑖𝑒𝑙.

𝜀𝑎𝑖𝑟

Frank Gustrau, “RF and Microwave Engineering: Fundamentals of 
Wireless Communications’, ISBN: 9781118349571, 2012 

Optical Fibers
ꟷ Dielectric waveguides can be optical fibers that have a circular cross-section

• Consist of a dielectric material surrounded by another dielectric material
• Allows transmitting optical and infrared signals with small losses (~0.2 dB per 1 km)
• Power transmitted is in the mW range. 



Two-Wire Line
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ꟷ Two-wire (twin-lead) lines are used for telecommunication to transport RF wave
• Used e.g. for antenna lines to TV
• Separation of the wire is small compared to the wavelength (at 30 MHz wavelength is 100 m)
• Wave is transported in a TEM mode
• May offer smaller losses in the VHF band than miniature coaxial cables, e.g. 0.55 dB/100m versus 6.6 

dB/100m for RG-58 
• However, more vulnerable to interference even if shielded.

𝑍 ≈ 276 Ω 𝐿𝑜𝑔
2𝐷

𝑑
For D >> d

Source: Electromagnetic Waves and Applications Part III, Y. MA

D
d

Source: Wikipedia
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http://www.winpoint.com.tw

Coaxial Line
ꟷ Coaxial cables are widely used in laboratories and carry signals in the TEM mode.. 

• At higher frequencies, the dimensions of the cables should be however limited as higher order modes 
(with a cutoff) can propagates

• This in turn limits the power capability
• Coaxial cables are typically utilized  below 3 GHz with attenuation losses of a few dB/100m in the UHF 

range (around 100 MHz)
• Losses however quickly rise with frequency (for small cables to ~10 dB/100m at 1 GHz) with an average 

power rating around just 1kW.
• The main losses arise due to the skin effect in the inner conductor, which is technically more difficult to 

cool than the outer conductor
• At higher frequencies (around 10 GHz) the dielectric losses of the insulator can become dominant
• By enlarging the coaxial lines diameters (several inches for outer diameter), the power capability may 

rise above 100 kW (at few hundred MHz) and into the MW regime (at few 10 MHz) with small 
attenuation losses (< 1dB/100m)
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𝑍 =
1

2𝜋 ∙ 𝜀𝑟
∙

𝜇0

𝜀0
∙ 𝐿𝑛

𝐷

𝑑

; recall 𝑍0 =
𝜇0

𝜀0
≈ 120𝜋 Ω

𝑍 ≈
60 Ω

𝜀𝑟
∙ 𝐿𝑛

𝐷

𝑑

Z (Ω)· 𝜀𝑟 D/d

41.56 2

50 2.302

75 3.493

D

d

Coaxial Line – Wave Impedance

TEM-mode 

ꟷ Last 2 values are common cable impedances, why ?

ꟷ Z at some ratios D/d



- Attenuation constant 𝛼

- There are attenuation losses along the coaxial line (conduction and dielectric losses)

𝛼 =
1

2 ∙ 𝑍
∙
1

𝜋
∙

1

𝑑
+

1

𝐷
∙

𝜇𝜔

2𝜎
+ 𝜋𝑓

𝜀𝑟

𝑐0
∙ 𝑡𝑎𝑛𝛿

tan𝛿 loss tangent of dielectric material ; recall surface resistance 𝑅𝑆=
𝜇𝜔

2𝜎

Resistive losses + dielectric losses

- The 2nd term does not depend on the ratio D/d

- What is the optimum ratio D/d to minimize losses in the coaxial cable?

- We then need to see for which ratio D/d the 1st term is at a minimum:

; 𝑍 =
1

2𝜋∙ 𝜀𝑟
∙

𝜇0

𝜀0
∙ 𝐿𝑛

𝐷

𝑑
𝛼 =

2𝜋 ∙ 𝜀𝑟

2 ∙ 𝑍0 ∙ 𝐿𝑛
𝐷
𝑑

∙
1

𝜋
∙

1

𝑑
+

1

𝐷
∙ 𝑅𝑆

𝛼 =
𝜀𝑟

𝑍0 ∙ 𝐿𝑛
𝑫
𝒅

∙
𝟏

𝑫
∙

𝑫

𝒅
+ 1 ∙ 𝑅𝑆

- Note that there is D left, not only D/d

- One then may ask what is the optimum ratio D/d
to achieve the minimum attenuation at a given diameter of the cable D ?

𝛼 ∙ 𝑍0 𝑫

𝜀𝑟 𝑅𝑆
=

𝑫
𝒅

+ 1

𝐿𝑛
𝑫
𝒅

≡ 𝑓𝛼(𝐷/𝑑)or 

Coaxial Line – Minimum Damping



Coaxial Line – Minimum Damping

~76.8 Ω

D/d=3.591

- E.g. PTFE with 𝜖𝑟 = 2.1 𝑍𝑜𝑝𝑡.~ 53 Ω

- If inner and outer conductor are of different materials, this is not true anymore since 
conductivity values are different, e.g. Al (D) and Cu (d) then Zopt, ~ 95 Ω/m 

𝑍𝑜𝑝𝑡. ≈
𝟕𝟔. 𝟖 𝛀

𝜖𝑟
- Minimum Attenuation: 

𝐷

𝑑
≈ 3.591at



Coaxial Line
– Maximum Voltage and Maximum Power -

- However, sometimes one rather aims for the maximum voltage (Vmax) at a given D to 
avoid a premature RF cable breakdown, which is given by the dielectric strength of the 
material (at RF breakdown the dielectric fails to insulate) 

- In that case, one wants to choose D/d to minimize the electrical field at given D and 
given voltage V between the inner and outer conductor 

- In a similar fashion, one finds that 𝑍opt. 𝑉𝑚𝑎𝑥
~

𝟔𝟎 𝛀

𝜖𝑟

𝐷

𝑑
= 2.718at

- Moreover, in other cases one desires the maximum power transmission at a given D

- In this case 𝑍opt. 𝑃𝑚𝑎𝑥
~

𝟑𝟎 𝛀

𝜖𝑟

𝐷

𝑑
= 1.65at



Coaxial Line – Power Capability

HELIFLEX are air-dielectric cables. The 
inner conductor is centered by using a 
dielectric helix made from high density 
polyethylene) 

Max. peak power rating: 5.8 MW at 0.5 MHz

but only 236 W at 560 MHz (fmax)

- Losses quickly rise with frequency

RG=Radio Guide cables

~ 3kW

D = 24.77 cm (corrugated Aluminium)
d = 9.94 cm (corrugated Copper tube)

Z = 50 Ω

- To maximize power capability, use biggest   
cables diameter

𝛼 =
𝜀𝑟

𝑍0 ∙ 𝐿𝑛
𝐷
𝑑

∙
𝟏

𝑫
∙

𝐷

𝑑
+ 1 ∙ 𝑅𝑆
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High Power Coaxial Lines for Cavities
- Consider: 3rd generation storage ring light sources can store few hundreds of mA

500 MHz BESSY (European)
HOM-Damped Cavity

- At Ib = 100 mA, the forward power required for the 
beam (beam loading) is 100 kW (CW) at 500 MHz

- Powered by coaxial coupler feeding cavity via
water-cooled loop coupler

- Typical effective operating voltage is 1 MV 

- We need more power than shown so far!
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High Power Coaxial Lines for Cavities

https://www.megaind.com

Horizontal region 
indicates peak 
power value

500 MHz

EiA coaxial transmission lines (50, 75, or 100 Ω)

Vendor for instance Mega Industries: In high
radiation areas where Teflon is not suitable as 
supports, special polymer insulators or ceramic 
supports are available for sizes up to 14” in diameter.
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Attenuation in such Coaxial Lines

https://www.megaind.com

500 MHz



What Defines Bandwidth of Transmission Lines?

Cutoff wavelength below which TE11 mode can propagate

- One does not want any higher order mode to propagate beside the lowest (dominant) mode

- Example: 2nd mode in coaxial cable is a dipole TE11-mode

- This dipole mode changes polarity twice around cable circumference

- Approximation: Use average circumference 𝜆𝑐
𝑇𝐸11 = 𝐶 = 𝜋 ∙

𝑑 + 𝐷

2

- In coaxial line the TEM-mode is the dominant mode

- The corresponding wavelength equals the cable circumference C, but at which radius?

𝑓𝑐
𝑇𝐸11 =

v

𝜆𝑐
𝑇𝐸11

=
𝑐0

𝜇𝑟 ∙ 𝜀𝑟
∙

1

𝜋 ∙
𝑑 + 𝐷

2

- Corresponding cutoff frequency

- Such modes have no cutoff frequency (transmission line works all the way down to DC)

Cutoff frequency above which TE11 mode can propagate

- Example: d = 1cm, D/d = 2.302 for Z = 50 Ω (in vacuum) 𝑓𝑐
𝑇𝐸11 = 5.78 𝐺𝐻𝑧

- Numerical solution: 𝑓𝑐
𝑇𝐸11 = 5.9 𝐺𝐻𝑧

- To maximize power capability, use biggest cables diameter AND avoid exciting the next mode

E-field H-field



Round Waveguide
- Derivation of field components in round waveguide follows the same method covered 
in lecture about resonators

z

- This time however we have no reflection plate, and wave can propagate freely

- We thus lose one constraint (index p) in longitudinal direction that we had derived for the
cylindrical resonator, and only have to deal with two integers m and n  

- Appendix covers derivations

𝛾 = 𝑖𝛽 = ± 𝑖 𝜇𝜖𝜔2 −
𝑥𝑚𝑛 𝑜𝑟 𝑥′𝑚𝑛

𝑅

2

- For a perfect conductor (no resistive attenuation) we obtain
the propagation constants for TE- and TM-modes 

- We see that only if β is real, the wave can propagate without decay by means of 𝑒−𝑖𝛽𝑧

𝜇𝜖𝜔2 ≥
𝑥𝑚𝑛 𝑜𝑟 𝑥′𝑚𝑛

𝑅

2

- This leads to so-called cutoff frequencies, above which wave may propagate for given m, n

𝑥𝑚𝑛 for TM-modes
𝑥′𝑚𝑛 for TE-modes

- The spectrum of possible modes above cutoff frequencies is continuous

𝜔𝑐 =
1

𝜇𝜖
∙

𝑥𝑚𝑛 𝑜𝑟 𝑥′𝑚𝑛

𝑅

𝛽2 = 𝜇𝜖 𝜔2 − 𝜔𝑐
2- Inserting last in first equation on this page yields: ; TE or TM modes



Phase and Group Velocity in Waveguide

𝘷𝑔𝑟 =
𝑑𝜔

𝑑𝑘

𝘷𝑝ℎ =
𝜔

𝑘

𝘷𝑔𝑟 =
𝑑𝜔

𝑑𝑘
=

𝑘𝑧

𝜇𝜖𝜔
=

1

𝜇𝜖

𝜔2 − 𝜔𝑐
2

𝜔
= v ∙ 1 −

𝑓𝑐
2

𝑓2

𝜔 =
𝑘𝑧

2

𝜇𝜖
+ 𝜔𝑐

2

; in free space 𝘷𝑝ℎ= 𝑐0 due to ; 𝑘2 = 𝜇𝜖𝜔2

𝛽 = 𝑘𝑧 =
2𝜋

Λ
= 𝑘2 − 𝑘𝑐

2 = 𝜇𝜖 𝜔2 − 𝜔𝑐
2

- In a waveguide the wavenumber is constrained compared to free space (𝑘 = 𝜇𝜖𝜔)
due to 𝛽2 = 𝜇𝜖 𝜔2 − 𝜔𝑐

2

Phase velocity

Group velocity (energy flows at group velocity)

𝘷𝑝ℎ =
𝜔

𝑘𝑧
= 𝑓 ∙ Λ =

𝜔

𝜇𝜖 𝜔2 − 𝜔𝑐
2

=
v

1 −
𝑓𝑐

2

𝑓2

Phase velocity is always > speed of light 

Group velocity is < speed of light 

Group velocity is not constant 
with frequency (dispersion)

-  is the wavelength of the waveguide (‘guide length’)



Phase and Group Velocity in Waveguide

Phase velocity is > speed of light 

Group velocity is < speed of light 
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Roots of Bessel Function and its Derivative
Lowest Cutoff Frequencies and Degeneracy

Cutoff frequencies in a round waveguide in sequential order for the first
TE and TM modes (normalized to first TE11 cutoff frequency)

- 1st cutoff is dipole mode TE11 (x’11 = 1.84118)

- 2nd cutoff is monopole mode TM01 (x01 = 2.40483)

- Degeneracy (differing modes, but same cutoff frequency) occurs when x1n = x’0n 𝑓1𝑛
TM = 𝑓0𝑛

TE

bandwidth

𝜔𝑐
𝑇𝑀 =

1

𝜇𝜖
∙

𝑥𝑚𝑛

𝑅
𝜔𝑐

𝑇𝐸 =
1

𝜇𝜖
∙

𝑥′𝑚𝑛

𝑅

- Recommended operating bandwidth (single-mode operation) is from slightly above TE11-mode
cutoff to maximally TM01-mode cutoff (factor ~1.31 higher than TE11-mode cutoff )



TE-Mode Pattern
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TE01

TE11



Waveguide and Frequencies below Cutoff

- We recall that for the propagation constant

- What if mode frequency is smaller than its cutoff frequency ?

𝛽 = 𝑖 ∙ 𝜇𝜖 𝜔𝑐
2 − 𝜔2

- β becomes imaginary itself and  becomes real

- The wave is therefore damped even for the loss-less case ( =0) according to 𝒆−𝜸𝒛

; for𝜔 < 𝜔𝑐

𝛾 = 𝑖𝛽

- Specific modes (with indices m, n) propagate undamped (perfect conductor) 

according to 𝑒−𝑖𝛽𝑧 and only above the cutoff frequency

and 𝛽 = 𝜇𝜖 𝜔2 − 𝜔𝑐
2



Example: Single-Cell (TESLA) Cavity

𝑓𝑐,𝑇𝑀01 =
c

2π
∙
xmn

R
= 2.94 𝐺𝐻𝑧 > 𝑓𝑇𝑀011

- First monopole harmonic of fundamental mode (TM011)

- First relevant monopole cutoff frequency is TM01 (not TE11)

R = 39 mm

 TM011 resonator mode is trapped 
inside cavity  we need HOM-
couplers to suppress this field

TM010 mode f = 1.302 GHz, Rsh = 105.6 Ω

TM011 mode f = 2.451 GHz, Rsh = 28.4 Ω
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Even More Power: Hollow Waveguides
ꟷ Hollow waveguides can transmit very high average power signals in the microwave spectrum

• Rectangular and round waveguides are commonly employed. 
• Without an inner conductor, they can sustain much higher power levels than coaxial lines
• Metal walls can be readily cooled
• Recommended bandwidth is limited – as for coaxial line – by preventing the next waveguide mode to 

co-exist with the dominant mode
• The inner surface of the waveguides can be plated with high conductive material

(e.g. copper, silver, gold) to reduce losses due to the skin effect
• Average power levels into the MW range can be achieved with rather small attenuation losses (few 

dB/100 m) with large scale waveguides
• Standard rectangular waveguides (WR) sizes are available up to WR2300 (0.584 m (23”) x 0.2921 m) 

covering 320-450 MHz and down to WR3 (0.864 mm x 0.432 mm) covering 220-330 GHz. 

- In SRF accelerators we may run 20 MV/m in CW in Energy Recovery Linacs with large currents
(up to 1A machines have been proposed in the past)

- The injector of an ERL is not energy-recovered  If structure is 1m long, we have a voltage of 20 MV (CW)
 beam loading at 100 mA is then already 2 MW.

- This is the power we would need to deliver into cavity (wall losses are negligible)
- Otherwise or we need to split powerand/or make cavities shorter to reduce require power per cavity



Rectangular Waveguide
Cutoff Frequency, Phase and Group Velocity

𝑓𝑐 =
v

2
∙

𝑚

𝑎

2

+
𝑛

𝑏

2

z

x

y

a = long side
b = short side

- The cutoff frequency can be calculated by (no full derivation here, refer to textbooks):

𝘷𝑔𝑟 =
𝑑𝜔

𝑑𝑘
= v 1 −

𝑓𝑐
2

𝑓2

Phase velocity Group velocity 

𝘷𝑝ℎ =
𝜔

𝑘
=

v

1−
𝑓𝑐
2

𝑓2

- We obtain the same relations for the phase and group velocity with the given cutoff
frequency in the rectangular waveguide as for round waveguides and all other related
consequences apply similarly

𝜔𝑐 = v ∙
𝑚 ∙ 𝜋

𝑎

2

+
𝑛 ∙ 𝜋

𝑏

2

; v is speed of light
in linear medium



- Cutoff frequency can be easily derived graphically

𝜆𝑐
𝑇𝐸10 = 2 ∙ 𝑎

𝑓𝑐
𝑇𝐸10 =

𝘷

2 ∙ 𝑎

a = λ/2

half wavelength

-  1st dominant mode is dipole TE10 -mode (m = 1, n= 0)

𝑓𝑐 =
v

2
∙

𝑚

𝑎

2

+
𝑛

𝑏

2

Rectangular Waveguide
Cutoff Frequencies of Lowest Modes

- Note: For TE-modes: m,n ≥ 0, but m=n=0 is not allowed since only trivial solution exist

- Note: For TM-modes: m,n ≥ 1

TE10

𝐸

a

b



𝑓𝑐 =
v

2
∙

𝑚

𝑎

2

+
𝑛

𝑏

2

Rectangular Waveguide
Cutoff Frequencies of Lowest Modes

- Note: For TE modes: m,n ≥ 0, but m=n=0 is not allowed since only trivial solution exist

- Note: For TM modes: m,n ≥ 1

- Ditto for the TE20-mode

𝜆𝑐
𝑇𝐸20 = 𝑎

𝑓𝑐
𝑇𝐸20 =

𝘷

𝑎

𝐸

TE20

a = λ

1 wavelength



𝑓𝑐 =
v

2
∙

𝑚

𝑎

2

+
𝑛

𝑏

2

Rectangular Waveguide
Cutoff Frequencies of Lowest Modes

- Note: For TE modes: m,n ≥ 0, but m=n=0 is not allowed since only trivial solution exist

- Note: For TM modes: m,n ≥ 1

- Ditto for the TE01-mode

𝜆𝑐
𝑇𝐸01 = 2 ∙ 𝑏

𝑓𝑐
𝑇𝐸01 =

𝘷

2 ∙ 𝑏

𝐸

TE01

b = λ/2

h
al

f 
w

av
el

en
gt

h



bandwidth

bandwidth

bandwidth
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Cutoff frequencies in a rectangular waveguide for the first TE and TM modes (normalized 
to first TE10 cutoff frequency) depending on the ratio of the waveguide height to the 
waveguide width b. Mode degeneracies may occur. 

- Various mode degeneracies may occur depending on ratio of waveguide height (b) to width (a)
and for all TE and TM modes with same indices m and n

Lowest Cutoff Frequencies and Degeneracy

- Again: Recommended operating bandwidth (single-mode operation) is from slightly above
TE10-mode cutoff to maximally TE20-mode cutoff for b ≤ a/2 (larger bandwidth than for round
waveguides). For b > a/2 the bandwidth is reduced as TE01-mode becomes 2nd mode



Power Transmission in a Rectangular Waveguide



Power Transmission along a Waveguide

𝑃𝑎𝑣𝑔 =
1

2
 

𝑑𝑆

𝑅𝑒 𝐸𝑡𝑟𝑎𝑛𝑠 × 𝐻∗
𝑡𝑟𝑎𝑛𝑠 ∙  𝑛 ⋅ 𝑑𝑆

- Power transmitted along a waveguide can be generally by integrating the Poynting vector over 
the-cross section of the waveguide  𝑆 = 𝐸 × 𝐻 Poynting vector

- Poynting vector points in the direction of the wave propagation and is the energy transferred 
per unit area and per unit time (units are V/m· A/m = W/m2)

- The transverse components of E and H are all normal to each other for TEM, TE,  and TM waves 
and cross product points in direction of  𝑛 ⋅ 𝑑𝑆

- Note that ratio of the transverse components Etrans/Htrans determines the wave impedance Z

𝐸𝑡𝑟𝑎𝑛𝑠 × 𝐻∗
𝑡𝑟𝑎𝑛𝑠 ∙  𝑛 = 𝐸𝑡𝑟𝑎𝑛𝑠 ⋅ 𝐻∗

𝑡𝑟𝑎𝑛𝑠 = 𝑍 ⋅ 𝐻𝑡𝑟𝑎𝑛𝑠
2 =

1

𝑍
⋅ 𝐸𝑡𝑟𝑎𝑛𝑠

2

- The transmitted power through the waveguide cross-section is thus: 

𝑃𝑎𝑣𝑔 =
1

2
∙ 𝑍  

𝑑𝑆

𝐻𝑡𝑟𝑎𝑛𝑠
2 ∙ 𝑑𝑆 =

1

𝑍
 

𝑑𝑆

𝐸𝑡𝑟𝑎𝑛𝑠
2 ∙ 𝑑𝑆

- For harmonic signals, the time-averaged power is given by real part of cross product integrated 
over the transverse cross-section of the guide normal to the propagation 



Example: Power Transmitted in TE10 mode

- For dominant TE10 mode, the non-vanishing  transverse electric field component is:

𝑃𝑎𝑣𝑔 =
1

2
∙

1

𝑍𝑤𝑎𝑣𝑒
 

𝑑𝑆

𝐸𝑡𝑟𝑎𝑛𝑠
2 ∙ 𝑑𝑆 =

𝐸𝑦 𝑧 = 0 = −𝑖𝐻0 ∙
𝜔 ∙ 𝜇

𝑘𝑐
2 ∙

𝜋

𝑎
∙ 𝑠𝑖𝑛

𝜋 ∙ 𝑥

𝑎

=
1

2
∙

1

𝑍𝑤𝑎𝑣𝑒
∙  𝑦=0

𝑏
𝑑𝑦  𝑥=0

𝑎
𝑑𝑥 ∙ 𝐻0 ∙

𝜔∙𝜇

𝑘𝑐
2 ∙

𝜋

𝑎
∙ 𝑠𝑖𝑛

𝜋∙𝑥

𝑎

2

=
1

2
∙

1

𝑍𝑤𝑎𝑣𝑒
∙ 𝑏 ∙ 𝐻0

2 ∙
𝜔∙𝜇

𝜋
∙ 𝑎

2

 𝑥=0

𝑎
𝑑𝑥 ∙ 𝑠𝑖𝑛

𝜋∙𝑥

𝑎

2

; 𝑘𝑐
2 =

𝜋

𝑎

2

; 𝑑𝑥 𝑠𝑖𝑛 𝜋∙𝑥
𝑎

2
= 𝑥

2
−

𝑎∙sin(2𝜋∙𝑥
𝑎 )

4𝜋=
1

2
∙

1

𝑍𝑤𝑎𝑣𝑒
∙ 𝑏 ∙ 𝐻0

2 ∙
𝜔∙𝜇

𝜋
∙ 𝑎

2
∙  𝑥

2
−

𝑎∙sin(
2𝜋∙𝑥

𝑎
)

4𝜋 0

𝑎

𝑃𝑎𝑣𝑔=
1

2
∙

1

𝑍𝑤𝑎𝑣𝑒
∙ 𝑏 ∙ 𝐻0

2 ∙
𝜔∙𝜇

𝜋
∙ 𝑎

2
∙

𝑎

2

- Consequently:



Example: Wave Impedance TE10 mode

- We thus need Etrans/Htrans :  The only non-vanishing transverse electric and magnetic field 
components for TE10 mode are:

𝐸𝑦 𝜔 = −𝑖𝐻0 ∙
𝜔 ∙ 𝜇

𝑘𝑐
2 ∙

𝑚𝜋

𝑎
∙ 𝑠𝑖𝑛

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑒𝑖𝜔𝑡 𝐻𝑥 𝜔 = 𝑖𝐻0 ∙

𝛽

𝑘𝑐
2 ∙

𝑚𝜋

𝑎
∙ 𝑠𝑖𝑛

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑒𝑖𝜔𝑡

𝑍𝑇𝐸10
= −

𝐸𝑦 𝑧 = 0

𝐻𝑥 𝑧 = 0
=

𝜔 ∙ 𝜇

𝛽
with  𝑓𝑐,𝑇𝐸10 =

v
2𝑎

; 𝛽 = 𝜇𝜖𝜔 ∙ 1 −
𝑓𝑐

2

𝑓2𝑍𝑇𝐸10
=

𝜇0

𝜖0
∙

𝜇𝑟

𝜖𝑟
∙

1

1 −
𝑓𝑐

2

𝑓2

𝑍0 =
𝜇0

𝜀0
≈ 120𝜋 ≈ 376.73 [Ω]

- From lecture on Maxwell’s equation we remember that vacuum impedance

- The TE10 waveguide impedance is therefore always greater than the free space wave 
impedance  Reflection occurs if wave would propagate out into free space 

- What is yet missing is an expression for the wave impedance Z

𝑍𝑇𝐸10
=

𝜇𝑟

𝜖𝑟
∙

𝑍0

1 −
𝑓𝑐

2

𝑓2



Example: Power Transmitted in TE10 mode

- By inserting the wave impedance we eventually obtain:

𝑃𝑎𝑣𝑔=
1

2
∙

𝛽

𝜔∙𝜇
∙ 𝑏 ∙ 𝐻0

2 ∙
𝜔∙𝜇

𝜋
∙ 𝑎

2
∙

𝑎

2
=

1

4
∙

𝛽∙𝜔∙𝜇

𝜋2 ∙ 𝑎3 ∙ 𝑏 ∙ 𝐻0
2 ; 𝑍𝑇𝐸10

=
𝜔∙𝜇

𝛽

; 𝛽 = 𝜇𝜖𝜔 ∙ 1 −
𝑓𝑐

2

𝑓2= 
𝜔∙𝜇∙ 𝜇𝜖𝜔

4𝜋2 ∙ 𝑎3 ∙ 𝑏 ∙ 𝐻0
2 ∙ 1 −

𝑓𝑐
2

𝑓2

; 𝑓𝑐,𝑇𝐸10 =
v
2𝑎

=𝑓2 ∙ 𝜇 ∙ 𝜇𝜖 ∙ 𝑎3 ∙ 𝑏 ∙ 𝐻0
2 ∙ 1 −

𝑓𝑐
2

𝑓2

= 𝑓2 ∙ 𝜇 ∙
1

v
∙ 𝑎3 ∙ 𝑏 ∙ 𝐻0

2 ∙ 1 −
𝑓𝑐

2

𝑓2

=
𝜇

𝜀
∙

𝑓2

v2 ∙ 𝑎3 ∙ 𝑏 ∙ 𝐻0
2 ∙ 1 −

𝑓𝑐
2

𝑓2

; v =
1
𝜇𝜖

𝑃𝑎𝑣𝑔=
1

4
∙

𝜇

𝜀
∙

𝑓2

𝑓𝑐
2 ∙ 𝑎 ∙ 𝑏 ∙ 𝐻0

2 ∙ 1 −
𝑓𝑐

2

𝑓2

with H0 the peak field amplitude

; v =
1
𝜇𝜖



|𝐸𝑦| = 𝐻0 ∙
𝜔 ∙ 𝜇

𝑘𝑐
2 ∙

𝜋

𝑎
∙ 𝑠𝑖𝑛

𝜋 ∙ 𝑥

𝑎

- The electrical field amplitude of TE10 mode (see appendix) is 

- Maximum electric field amplitude is in the center of the waveguide (x = a/2)

𝐸𝑦 = 𝐻0 ∙
𝜔 ∙ 𝜇

𝑘𝑐
2 ∙

𝜋

𝑎
= 𝐻0 ∙

𝜔 ∙ 𝜇

𝜋
∙ 𝑎 ; 𝑘𝑐

2 =
𝜋

𝑎

2

- If the waveguide is filled with air (1 bar), the dielectric strength is 3 MV/m (Emax)

- The electric field shall not exceed the dielectric strength, thus:

𝐻0,𝑚𝑎𝑥 =
𝜋

𝜔 ∙ 𝜇 ∙ 𝑎
∙ 𝐸𝑚𝑎𝑥

𝑃𝑎𝑣𝑔,𝑚𝑎𝑥=
1

4
∙

𝜇

𝜀
∙

𝑓2

𝑓𝑐
2 ∙ 𝑎 ∙ 𝑏 ∙

𝜋

𝜔∙𝜇∙𝑎

2
∙ 𝐸𝑚𝑎𝑥

2 ∙ 1 −
𝑓𝑐

2

𝑓2

𝑃𝑎𝑣𝑔,𝑚𝑎𝑥=
1

16
∙

𝜇

𝜀
∙

1

𝑓𝑐
2 ∙

𝑏

𝑎
∙

1

𝜇2 ∙ 𝐸𝑚𝑎𝑥
2 ∙ 1 −

𝑓𝑐
2

𝑓2

- Inserting into transmitted power formula yields:

Example: Power Limit in TE10 mode (air-filled)



Example: WR650 Waveguide

- Standard WR650 rectangular waveguides (6.5” x 3.25”) with TE10 cutoff  at ~908 MHz are often 
used to power L-band accelerators 

- For JLab’s cavities (fRF = 1.497 MHz) the maximally transmitted power in air-filled waveguide 
WR650 waveguides is ~65 MW (far above the requirements of ~13 kW (forward power) for 
upgrade cavities)  

- What about attenuation?



Attenuation of Various Transmission Lines

http://www.rfcafe.com/



Example: WR650 Waveguide

- Standard WR650 rectangular waveguides (6.5” x 3.25”) with TE10 cutoff  at ~908 MHz are often 
used to power L-band accelerators 

- For JLab’s cavities (fRF = 1.497 MHz) the maximally transmitted power in air-filled waveguide 
WR650 waveguides is ~65 MW (far above the requirements of ~13 kW (forward power) for 
upgrade cavities)  

- Waveguides and coaxial lines are sometimes filled with dielectric sulfur hexafluoride (SF6) gas 
to increase the RF breakdown field limit (1 bar SF6 is equivalent to ~3 bar air), however SF6 is a 
potential greenhouse gas  

- In reality: Reflections in waveguides such as arising from adapters, directional coupler, and 
waveguide bends can reduce the breakdown field  

- Other insertion devices can significantly reduce the breakdown field to a fraction of the 
theoretical waveguide limit

https://www.megaind.com

- What about attenuation?

- Everything OK?



Experiment with Rectangular Waveguide

40

http://www.agilent.com/

- Rectangular waveguide with various terminations

1) Measure the reflection response S11 using coaxial-to-waveguide adapter using VNA

2) Make use of calibration kit (1-port calibration)

3) Learn how to de-embed a device under test (DUT) utilizing the Time Domain   
Reflectometry (TDR) option of the VNA

4) Measure the reflection response of the adapter only by setting appropriate time gates

5) What is the useful range for the measurements? Note: All adapters are bandwidth-
limited and allow only for a certain frequency range to be transmitted efficiently

6) Measure the reflection response of the termination (HOM-loads) by re-adjusting the time 
gates 

7) Record the reflection response and determine the characteristics for each HOM-load

8) How does using the TDR option compare to regular results?

9) What is the best HOM-load at room temperature?

HOM damping waveguide dimensions: 
H x B = 0.71” x 6.3” = 18 mm x 160 mm

Standard WR430 adapter:
H x B = 1.875” x 4.3”



Appendix



Round Waveguide
- We assume an infinitely long waveguide in z-direction

- An existing wave inside (previously launched from on side of the guide) 
can be propagating only in one direction (no reflection plane) 

R = inner radius

z
- Instead of an infinitely long waveguide one can also assume that the 
waveguide is perfectly matched on one end such that no reflection occurs 

- Derivation of fields is analogous to cylindrical resonator, except for z-direction 

 𝐴 = 𝑁 𝑟 𝑀 𝜑 𝑃 𝑧 𝑃 𝑧 = 𝐵𝑒±𝛾𝑧

forwards or backwards travelling  wave

 =  + i 𝛽

- Longitudinal index p: Since there is no boundary in z-direction, a dependency on a number ‘p’ is 
undetermined 

𝑀 𝜑 = 𝐶1𝑒−𝑖𝑚𝜑 + 𝐶2𝑒+𝑖𝑚𝜑 𝑀 𝜑 = 𝑀 𝜑 + 2𝜋

- Radial index n: 

- Azimuthal index m: ; m ∈ ℕ0

𝑁 𝑟 = 𝐷1 𝐽𝑚 𝑟 𝑘2 + 𝛾2

- TM-modes:
𝑥𝑚𝑛 = 𝑅 𝑘2 + 𝛾2

- TE-modes:  𝛿𝐻𝑧 𝑟 = 𝑅

𝛿𝑟
= 0

𝜕𝑁 𝑟 = 𝑅

𝜕𝑟
= 𝐷1

𝜕

𝜕𝑟
𝐽𝑚 𝑅 𝑘2 + 𝛾2 = 0

𝑥′𝑚𝑛 = 𝑅 𝑘2 + 𝛾2

𝛾 = ± 𝑖 𝜇𝜖𝜔2 −
𝑥𝑚𝑛

𝑅

2

;𝑘2 = 𝜇𝜖𝜔2

𝛾 = ± 𝑖 𝜇𝜖𝜔2 −
𝑥′𝑚𝑛

𝑅

2

𝐸𝑧(𝑟) ∝ 𝑁 𝑅 = 𝐷1 𝐽𝑚 𝑅 𝑘2 + 𝜸2 = 0

Tangential fields of Ez(r=R) must vanish:

Ez = 0, azimuthal fields E(r=R) must vanish at cavity perimeter 



Round Waveguide

- Loss-less case ( = 0)

𝛾𝑇𝑀 = 𝑖𝛽 = ± 𝑖 𝜇𝜖𝜔2 −
𝑥𝑚𝑛

𝑅

2

𝛾𝑇𝐸 = 𝑖𝛽 = ± 𝑖 𝜇𝜖𝜔2 −
𝑥′𝑚𝑛

𝑅

2

- Only if β is real, the wave can propagate without decay by means of 𝑒−𝑖𝛽𝑧

𝜇𝜖𝜔2 ≥
𝑥𝑚𝑛

𝑅

2

- Leads to so-called cutoff frequencies, beyond which wave may propagate for given m, n and R

𝜇𝜖𝜔2 ≥
𝑥′𝑚𝑛

𝑅

2

- Cutoff-frequencies for TM (use xmn) and TE modes (use x’mn):

𝜔𝑐
𝑇𝑀,𝑇𝐸 = 2𝜋𝑓𝑐

𝑇𝑀,𝑇𝐸 = 2𝜋
𝘷

𝜆𝑐
𝑇𝑀,𝑇𝐸 =

1

𝜇𝜖
∙

𝑥𝑚𝑛 𝑜𝑟 𝑥′𝑚𝑛

𝑅

- The spectrum of possible modes above cutoff frequencies is continuous

𝛽2 = 𝜇𝜖 𝜔2 − 𝜔𝑐
2 ; TE or TM modes- Inserting last in first equations on this page yields:



44

Round Waveguide - Field Components

𝐸𝑧 𝜔 = 𝐸0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐸𝑟 𝜔 = −𝐸0

𝜋𝑅2

𝑥𝑚𝑛
2

𝜕𝐽𝑚 𝑟
𝑥𝑚𝑛
𝑅

𝜕𝑟
𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐸𝜑 𝜔 = 𝐸0

𝑚

𝑟
∙

𝜋𝑅2

𝐿 𝑥𝑚𝑛
2 ∙ 𝐽𝑚 𝑟

𝑥𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑟 𝜔 = −𝑖𝐸0 ∙
𝑚

𝑟
∙

𝜔𝑇𝑀𝜀𝑅2

𝑥𝑚𝑛
2 ∙ 𝐽𝑚 𝑟

𝑥𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝜑 𝜔 = −𝑖𝐸0 ∙
𝜔𝑇𝑀𝜀𝑅2

𝑥𝑚𝑛
2 ∙

𝜕𝐽𝑚 𝑟
𝑥𝑚𝑛
𝑅

𝜕𝑟
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑧 𝜔 = 0

TM-Modes TE-Modes

𝐸𝑧 𝜔 = 0

𝐸𝑟 𝜔 = 𝑖𝐻0 ∙
𝑚

𝑟
∙

𝜔𝑇𝐸𝜇𝑅2

𝑥′𝑚𝑛
2

∙ 𝐽𝑚 𝑟
𝑥′𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐸𝜑 𝜔 = 𝑖𝐻0 ∙
𝜔𝑇𝐸𝜇𝑅2

𝑥′𝑚𝑛
2

∙
𝜕𝐽𝑚 𝑟

𝑥′𝑚𝑛
𝑅

𝜕𝑟
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑟 𝜔 = 𝐻0 ∙
𝜋𝑅2

𝑥′𝑚𝑛
2

∙
𝜕𝐽𝑚 𝑟

𝑥′𝑚𝑛
𝑅

𝜕𝑟
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝜑 𝜔 = −𝐻0 ∙
𝑚

𝑟
∙

𝜋𝑅2

𝑥′𝑚𝑛
2

∙ 𝐽𝑚 𝑟
𝑥′𝑚𝑛

𝑅
∙ 𝑠𝑖𝑛(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑧 𝜔 = 𝐻0 ∙ 𝐽𝑚 𝑟
𝑥𝑚𝑛

′

𝑅
∙ 𝑐𝑜𝑠(𝑚𝜑) ∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝜔𝑐
𝑇𝑀 =

1

𝜇𝜖
∙

𝑥𝑚𝑛

𝑅
𝜔𝑐

𝑇𝐸 =
1

𝜇𝜖
∙

𝑥′𝑚𝑛

𝑅

Note: Cutoff frequency determined by interior medium (permittivity, permeability), tube radius (R), and 
roots (xmn, x’mn) of Bessel function of first kind (TM-modes) or its derivative (TE-modes)



TE-Mode Pattern

45

TE21



TM-Mode Pattern

46

TM01

TM11



TM-Mode Pattern

47

TM21



0

First 10 Beam Tube Modes (E/H-fields)

48

TE11

TE01 TE31

TE21TM01

TM11

TE12 TE41

TM02

TM21



Cutoff Frequencies of Cavity Beam Tubes

49

- R = 35-39 mm are typical tube radii for 1.3-1.5 GHz (L-band) SRF cavities, e.g. 
EU-XFEL/ILC/LCLS-II TESLA-type cavities or JLab’s CEBAF/FEL cavities

- Larger tube radii are considered for high-current heavily HOM-damped cavities, which lets Higher
Order Modes propagate out of cavity at lower frequencies, e.g. 55 mm for Cornell 1.3 GHz ERL
cavity design
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Rectangular Waveguide - Field Components

𝐸𝑧 𝜔 = 𝐸0 ∙ 𝑠𝑖𝑛
𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑠𝑖𝑛

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐸𝑥 𝜔 = −𝑖𝐸0 ∙
𝛽

𝑘𝑐
2 ∙

𝑚𝜋

𝑎
∙ 𝑐𝑜𝑠

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑠𝑖𝑛

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐸𝑦 𝜔 = −𝑖𝐸0 ∙
𝛽

𝑘𝑐
2 ∙

𝑛𝜋

𝑏
∙ 𝑠𝑖𝑛

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑐𝑜𝑠

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑥 𝜔 = 𝑖𝐸0 ∙
𝜔 ∙ 𝜀

𝑘𝑐
2 ∙

𝑛𝜋

𝑏
∙ 𝑠𝑖𝑛

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑐𝑜𝑠

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑦 𝜔 = −𝑖𝐸0 ∙
𝜔 ∙ 𝜀

𝑘𝑐
2 ∙

𝑚𝜋

𝑎
∙ 𝑐𝑜𝑠

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑠𝑖𝑛

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑧 𝜔 = 0

TM-Modes TE-Modes

𝐸𝑧 𝜔 = 0

𝐸𝑥 𝜔 = 𝑖𝐻0 ∙
𝜔 ∙ 𝜇

𝑘𝑐
2 ∙

𝑛𝜋

𝑏
∙ 𝑐𝑜𝑠

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑠𝑖𝑛

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐸𝑦 𝜔 = −𝑖𝐻0 ∙
𝜔 ∙ 𝜇

𝑘𝑐
2 ∙

𝑚𝜋

𝑎
∙ 𝑠𝑖𝑛

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑐𝑜𝑠

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑥 𝜔 = 𝑖𝐻0 ∙
𝛽

𝑘𝑐
2 ∙

𝑚𝜋

𝑎
∙ 𝑠𝑖𝑛

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑐𝑜𝑠

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑦 𝜔 = 𝑖𝐻0 ∙
𝛽

𝑘𝑐
2 ∙

𝑛𝜋

𝑏
∙ 𝑐𝑜𝑠

𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑠𝑖𝑛

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

𝐻𝑧 𝜔 = 𝐻0 ∙ 𝑐𝑜𝑠
𝑚 ∙ 𝜋 ∙ 𝑥

𝑎
∙ 𝑐𝑜𝑠

𝑛 ∙ 𝜋 ∙ 𝑦

𝑏
∙ 𝑒−𝑖𝛽𝑧∙ 𝑒𝑖𝜔𝑡

Note: Cutoff frequency determined by interior medium (permittivity, permeability)
and waveguide internal dimensions a and b (a = inner width, b = inner height)

n, m ≥ 1 (m or n = 0  𝐸𝑧 𝜔 = 0) n, m ≥ 0 (n=m=0 not allowed, 𝐻𝑧 𝜔 static)

𝜔𝑐 = 2𝜋𝑓𝑐 =
𝜋

𝜇𝜖
∙

𝑚

𝑎

2

+
𝑛

𝑏

2

TM11 is 1st propagating TM-mode TE10 is first propagating TE-mode
𝐸𝑥 = 𝑍𝑇𝐸 ⋅ 𝐻𝑦

𝐸𝑦 = −𝑍𝑇𝐸 ⋅ 𝐻𝑥

𝐸𝑥 = 𝑍𝑇𝑀 ⋅ 𝐻𝑦

𝐸𝑦 = −𝑍𝑇𝑀 ⋅ 𝐻𝑥

𝑘𝑐
2 =

𝑚 ∙ 𝜋

𝑎

2

+
𝑛 ∙ 𝜋

𝑏

2
𝛽 = 𝜇𝜖𝜔 ∙ 1 −

𝑓𝑐
2

𝑓2



Mode Pattern TE- and TM-mode, respectively

TE10

Surface current distribution for the TE10 mode at 
a fixed time. The mode moves in z direction.

TM11

E-field (solid) lines and H-field (dashed) lines at a fixed time.

E-field (solid) lines and H-field (dashed) lines at a fixed time.

These figures are taken from a textbook from Prof. Z. Popovic, 
‘Electromagnetics Around Us: Some Basic Concepts’



Mode Pattern

TE10 TE11 TE21

TE20
TM11 TM21


